10365: 「一本通 6.6 例 4」古代猪文
内存限制:512 MB
时间限制:1.000 S
提交:0
解决:0
评测方式:文本比较
命题人:
题目描述
**原题来自:SDOI 2010**
猪王国的文明源远流长,博大精深。
iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 $N$。当然,一种语言如果字数很多,字典也相应会很大。当时的猪王国国王考虑到如果修一本字典,规模有可能远远超过康熙字典,花费的猪力、物力将难以估量。故考虑再三没有进行这一项劳猪伤财之举。当然,猪王国的文字后来随着历史变迁逐渐进行了简化,去掉了一些不常用的字。
iPig 打算研究古时某个朝代的猪文文字。根据相关文献记载,那个朝代流传的猪文文字恰好为远古时期的 $k$ 分之一,其中 $k$ 是 $N$ 的一个正约数(可以是 $1$ 和 $N$)。不过具体是哪 $k$ 分之一,以及 $k$ 是多少,由于历史过于久远,已经无从考证了。
iPig 觉得只要符合文献,每一种能整除 $N$ 的 $k$ 都是有可能的。他打算考虑到所有可能的 $k$。显然当 $k$ 等于某个定值时,该朝的猪文文字个数为 $\frac Nk$。然而从 $N$ 个文字中保留下 $\frac Nk$ 个的情况也是相当多的。iPig 预计,如果所有可能的 $k$ 的所有情况数加起来为 $P$ 的话,那么他研究古代文字的代价将会是 $G$ 的 $P$ 次方。
现在他想知道猪王国研究古代文字的代价是多少。由于 iPig 觉得这个数字可能是天文数字,所以你只需要告诉他答案除以 $999911659$ 的余数就可以了。
输入
输入有且仅有一行:两个数 $N,G$,用一个空格分开。
输出
输出有且仅有一行:一个数,表示答案除以 $999911659$ 的余数。
样例输入 复制
4 2
样例输出 复制
2048
提示
数据范围:$10\%$ 的数据中,$1\le N\le 50$; $20\%$ 的数据中,$1\le N\le 1000$; $40\%$ 的数据中,$1\le N\le 10^5$; $100\%$ 的数据中,$1\le G\le 10^9$,$1\le N\le 10^9$。